

Thermodynamics - Exam I

Lebanese American University School of Engineering and Architecture

Name:

Date:

Tuesday, November 17th 2009; 06:00 PM

Location:

ENG attic

Instructor:

Dr. Wassim HABCHI No documents allowed

Notes: Value:

20% of Total Grade

Time:

120 Minutes

Problem I (30 points)

Part I: (10 points)

Consider a piston-cylinder device where the piston is moving freely. The cylinder contains water at a given temperature T and pressure P. An electric resistance heater is placed inside the tank. It passes a current I from a source of voltage V. The water is being stirred by a paddle wheel and the cylinder is losing heat to the surroundings.

0-1/2#-3/4

a) Identify the different forms of heat and work exchange involved in this system

b) If you were asked to determine the steady-state temperature inside the cylinder, what would be the missing parameters or data? 0-2/2-6/5-6

Part II: (10 points)

Consider a rigid tank that contains a given mass m of water that has a specific internal energy u_I . The system gains a given amount of work W and looses a given amount of heat Q. If you were asked to determine the new value for the specific internal energy u_2 :

- a) What engineering principle would you need to apply in order to solve this problem?
- b) Determine a set of assumptions that would simplify this problem without changing the
- c) Formulate an appropriate equation to solve the problem (Lpt)

Part III: (10 points)

Consider the compression process shown on the P-V diagram below:

The work associated with this process is defines as:

$$W = \int_{-\infty}^{2} P dV \quad (1)$$

0-1/2-3/4-5

- a) Find an expression for P as a function of V if the pressure rise is linear with respect to (5pt)V.
- b) Using equation (1), determine the work W associated with this process (in Y). Verify (5, Z) your answer using a simpler and more straightforward method.

Solution:

Pat I:

a) The system is exchanging energy by Heat Swork:

- . Heat: Convection
 - Realistion
- . Work. _ Electrical

- Sheft work b) the mining parameters one:

- Convection coefficient h
- External surface onea of cylinder A

 Temperature of the surrounder of Town

 Emissivity of the cylinder E

- Shalt work Welst

then we would have

Pat II.

Ein - Eout = DEcysten

(Q2 - Dout) + (Win - 4) out) = DU + DVE + APE

$$- D + W = DU = m(u_2 - u_1)$$
or $u_2 = u_1 + \frac{W - D}{m}$

a) Since the pressure rise is linear with respect to V:

$$(2-0)$$
 0,8e = 200 \Rightarrow e = $\frac{200}{0.8}$ = 250
And b = 100

b)
$$W = \int_{V_1}^{V_2} P dV = \int_{V_1}^{V_2} (250V + 100) dV = \left[\frac{250V^2}{2} + 100V \right]_{V_1}^{V_2}$$

$$\omega = (125 \times 1, 2^{2} + 100 \times 1, 2) - (125 \times 0, 1, 2 + 100 \times 0, 1, 2)$$

$$\omega = 240 \times 7 = 240000$$

2nd method:

Wis nothing else but the onea under the PV curve:

Problem II (30 points)

A piston-cylinder device initially contains 2Kg of water at 200KPa and 153°C. The device is equipped with a set of stops as shown below:

- a) Determine the water phase, I wolume V_I , internal energy U_I , and I enthalpy I of water at the initial state.
- b) Now the cylinder looses heat and the piston falls down until it reaches the stops. At this position the volume V_2 is half the original volume V_1 . Determine the new phase of water as well as T_2 , U_2 and H_2 .
- c) Now that the piston has reached the stops the cylinder keeps on loosing heat until its pressure reaches 50 KPa. Determine the new phase of water as well as T_3 , U_3 and H_3 .
- d) Make a rough sketch of the entire process $1\rightarrow 3$ on a P-v diagram (3)

$$Q P = 200 \text{ KPe} \ 8T = 153°C$$
, by interpolate we get:
 $U_1 = 2581.8 \text{ KJ/Kg} \longrightarrow U_1 = m u_1 = 2 \times 2581.8 = 5163.5 \text{ KJ}$
 $O_1 = 0.9671 \text{ m}^2/\text{Kg} \longrightarrow U_1 = m u_1 = 2 \times 0.9671 = 1.9342 \text{ m}^2$
 $U_1 = 2775.2 \text{ Kg/Kg} \longrightarrow U_1 = m u_2 = 2 \times 2775.2 = 5550. \text{ k/J}$

b)
$$V_2 = \frac{V_1}{2}$$
 $\implies v_2 = \frac{v_1}{2} = \frac{0,9671}{2} = 0,4835 \text{ m}^2/\text{kp}$
ad $P_2 = P_1$ since the piston 13 money freely.

sice of Log - Sat. Ly. - vap. mintere

$$\chi = \frac{v_2 - v_8}{v_9 - v_6} = \frac{0,1835 - 0,001061}{0,88578 - 9001061} = 0,5153$$

```
Lebanese American University
```

MEE 201 - Exam I

•
$$u_2 = u_{g+} \times u_{gg} = 50 \text{ k,S} + 0,5453 \times 202 \text{ k,6} = 1608,5 \text{ KJ/Kg}$$

$$\longrightarrow U_2 = 2 \times 1608,5 = \boxed{3217 \text{ KJ}}$$

$$x = \frac{v_1 - v_f}{v_g - v_f} = \frac{0,1835 - 0,001030}{3,2403 - 0,001030} = \left[\frac{0,1489}{3}\right]$$

d)

$$u_3 = u_{\xi} + x u_{\xi} = 3h_0, 49 + 0,1488 \times 2142,7 = 659,54 \times 3/149$$

$$\Rightarrow 0_3 = 2 \times 659, 54 = 1319,1 \times 5/14$$

Problem III (20 points)

A steam power plant is operating at full regime. Under this regime the rate amount of fuel burned in the boiler is 2.5 Kg/s and the combustion efficiency is 98%. The shaft of the turbine is rotating at a speed of 2000 rpm with a torque of 4500 N.m. The power supplied to the pump is 50 KW and the rate amount of heat generated by the boiler is 2 MW.

- a) Determine the heating value of the fuel used
- b) The thermal efficiency of the power plant
- c) If the overall efficiency of the power plant is 65%, determine the efficiency of the generator.
- d) Determine the electric power provided by the generator (in MW)

Problem IV (20 points)

Consider the hydraulic car lifter shown below. The tubes are of cylindrical shapes and their internal diameters are D_1 =5cm and D_2 =2m. The oil used has a density of 780 Kg/m³.

a) Neglecting the piston's weight, determine the pressure difference ΔP inside the Gas tank if the car were to be lifted to a height of 10 cm from its original position shown above. What would this pressure become if the diameter D_I was 10cm?

b) What would be the effect of using an oil of lower density?

Hint: the displaced volume of oil in one tube is the same that goes into

<u>Solution</u>:

The increase in the level of oil (10 m) corresponds to a decrease in the small tube Dx such that:

$$V = \frac{\pi O_1^2}{u} \times \Delta x = \frac{\pi O_2^2}{u} \times O_1 \longrightarrow \left[\Delta x = O_1 \left(\frac{D_2}{O_1}\right)^2\right]$$

Since the displaced value of oil inthe 1st tube foes entirely into the second.

At the find position:

$$\Rightarrow \qquad \mathsf{DP} = \varrho \mathsf{g} \left(\mathsf{D} \mathsf{x} + \mathsf{o}_{i} \mathsf{i} \right) = \varrho \mathsf{g} \left[\mathsf{o}_{i} \left(\frac{\mathsf{O}_{2}}{\mathsf{O}_{i}} \right)^{2} + \mathsf{o}_{i} \mathsf{i} \right]$$

$$\rightarrow \Delta P = 780 \times 10 \times \left[0_{11} \left(\frac{200}{5} \right)^{2} + 0_{11} \right]$$

DP = 1248780 Pa # 1,25 MPa

1

b) If the oil was of lower density, then DP would be smaller and lan effort would be needed to lift the

The END